Documentation

Mathlib.Probability.Distributions.Gaussian.HasGaussianLaw.Independence

Independence of Gaussian random variables #

In this file we prove some results linking Gaussian random variables and independence. It is a well known fact that if (X, Y) is Gaussian, then X and Y are independent if their covariance is zero. We prove many versions of this theorem in different settings: in Banach spaces, Hilbert spaces, and for families of real random variables.

We also prove that independent Gaussian random variables are jointly Gaussian.

Main statements #

Tags #

Gaussian random variable

theorem ProbabilityTheory.iIndepFun.hasGaussianLaw {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_2} [Finite ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] [(i : ι) → NormedSpace (E i)] {X : (i : ι) → ΩE i} (hX1 : ∀ (i : ι), HasGaussianLaw (X i) P) (hX2 : iIndepFun X P) :
HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P

Independent Gaussian random variables are jointly Gaussian.

theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_strongDual {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_2} [Finite ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] [(i : ι) → NormedSpace (E i)] {X : (i : ι) → ΩE i} (hX : HasGaussianLaw (fun (ω : Ω) (i : ι) => X i ω) P) (h : ∀ (i j : ι), i j∀ (L₁ : StrongDual (E i)) (L₂ : StrongDual (E j)), covariance (L₁ X i) (L₂ X j) P = 0) :

If $(X_i)_{i \in \iota}$ are jointly Gaussian and uncorrelated, then they are independent.

theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_inner {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_2} [Finite ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] [(i : ι) → InnerProductSpace (E i)] {X : (i : ι) → ΩE i} (hX : HasGaussianLaw (fun (ω : Ω) (i : ι) => X i ω) P) (h : ∀ (i j : ι), i j∀ (x : E i) (y : E j), covariance (fun (ω : Ω) => inner x (X i ω)) (fun (ω : Ω) => inner y (X j ω)) P = 0) :

If $(X_i)_{i \in \iota}$ are jointly Gaussian and uncorrelated, then they are independent.

theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_eval {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_2} [Finite ι] {κ : ιType u_4} [∀ (i : ι), Finite (κ i)] {X : (i : ι) → κ iΩ} (hX : HasGaussianLaw (fun (ω : Ω) (i : ι) (j : κ i) => X i j ω) P) (h : ∀ (i j : ι), i j∀ (k : κ i) (l : κ j), covariance (X i k) (X j l) P = 0) :
iIndepFun (fun (i : ι) (ω : Ω) (j : κ i) => X i j ω) P

If $((X_{i,j})_{j \in \kappa_i})_{i \in \iota}$ are jointly Gaussian, then they are independent if for all $i_1 \ne i_2 \in \iota$ and for all $j_1 \in \kappa_{i_1}, j_2 \in \kappa_{i_2}$, $\mathrm{Cov}(X_{i_1, j_1}, X_{i_2, j_2}) = 0$.

theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_eq_zero {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_2} [Finite ι] {X : ιΩ} (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) (h : ∀ (i j : ι), i jcovariance (X i) (X j) P = 0) :

If $(X_i)_{i \in \iota}$ are jointly Gaussian, then they are independent if for all $i \ne j$, \mathrm{Cov}(X_i, X_j) = 0$.

theorem ProbabilityTheory.IndepFun.hasGaussianLaw {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [MeasurableSpace E] [CompleteSpace E] [BorelSpace E] [SecondCountableTopology E] [NormedAddCommGroup F] [MeasurableSpace F] [CompleteSpace F] [BorelSpace F] [SecondCountableTopology F] [NormedSpace E] [NormedSpace F] {X : ΩE} {Y : ΩF} (hX : HasGaussianLaw X P) (hY : HasGaussianLaw Y P) (hXY : IndepFun X Y P) :
HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P

Independent Gaussian random variables are jointly Gaussian.

theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_covariance_strongDual {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [MeasurableSpace E] [CompleteSpace E] [BorelSpace E] [SecondCountableTopology E] [NormedAddCommGroup F] [MeasurableSpace F] [CompleteSpace F] [BorelSpace F] [SecondCountableTopology F] [NormedSpace E] [NormedSpace F] {X : ΩE} {Y : ΩF} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) (h : ∀ (L₁ : StrongDual E) (L₂ : StrongDual F), covariance (L₁ X) (L₂ Y) P = 0) :
IndepFun X Y P

If $(X, Y)$ is Gaussian, then $X$ and $Y$ are independent if they are uncorrelated.

theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_covariance_inner {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [MeasurableSpace E] [CompleteSpace E] [BorelSpace E] [SecondCountableTopology E] [NormedAddCommGroup F] [MeasurableSpace F] [CompleteSpace F] [BorelSpace F] [SecondCountableTopology F] [InnerProductSpace E] [InnerProductSpace F] {X : ΩE} {Y : ΩF} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) (h : ∀ (x : E) (y : F), covariance (fun (ω : Ω) => inner x (X ω)) (fun (ω : Ω) => inner y (Y ω)) P = 0) :
IndepFun X Y P

If $(X, Y)$ is Gaussian, then $X$ and $Y$ are independent if they are uncorrelated.

theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_covariance_eval {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_4} {κ : Type u_5} [Finite ι] [Finite κ] {X : ιΩ} {Y : κΩ} (hXY : HasGaussianLaw (fun (ω : Ω) => (fun (i : ι) => X i ω, fun (j : κ) => Y j ω)) P) (h : ∀ (i : ι) (j : κ), covariance (X i) (Y j) P = 0) :
IndepFun (fun (ω : Ω) (i : ι) => X i ω) (fun (ω : Ω) (j : κ) => Y j ω) P

If $((X_i)_{i \in \iota}, (Y_j)_{j \in \kappa})$ is Gaussian, then $(X_i)_{i \in \iota}$ and $(Y_j)_{j \in \kappa}$ are independent if for all $i \in \iota, j \in \kappa$, $\mathrm{Cov}(X_i, Y_j) = 0$.

theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_covariance_eq_zero {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) (h : covariance X Y P = 0) :
IndepFun X Y P

If $(X, Y)$ is Gaussian, then $X$ and $Y$ are independent if $\mathrm{Cov}(X, Y) = 0$.

theorem ProbabilityTheory.iIndepFun.hasGaussianLaw_sum {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {ι : Type u_3} [Fintype ι] {X : ιΩE} (hX1 : ∀ (i : ι), HasGaussianLaw (X i) P) (hX2 : iIndepFun X P) :
HasGaussianLaw (∑ i : ι, X i) P
theorem ProbabilityTheory.iIndepFun.hasGaussianLaw_fun_sum {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {ι : Type u_3} [Fintype ι] {X : ιΩE} (hX1 : ∀ (i : ι), HasGaussianLaw (X i) P) (hX2 : iIndepFun X P) :
HasGaussianLaw (fun (ω : Ω) => i : ι, X i ω) P
theorem ProbabilityTheory.iIndepFun.hasGaussianLaw_fun_add {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {X Y : ΩE} (hX : HasGaussianLaw X P) (hY : HasGaussianLaw Y P) (h : IndepFun X Y P) :
HasGaussianLaw (fun (ω : Ω) => X ω + Y ω) P
theorem ProbabilityTheory.iIndepFun.hasGaussianLaw_fun_sub {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {X Y : ΩE} (hX : HasGaussianLaw X P) (hY : HasGaussianLaw Y P) (h : IndepFun X Y P) :
HasGaussianLaw (fun (ω : Ω) => X ω - Y ω) P

If X and Y are two Gaussian random variables such that X and Y - X are independent, then Y - X is Gaussian.

This lemma is useful to prove that a process with independent increments and whose marginals are Gaussian has Gaussian increments.