Documentation

Mathlib.Probability.Distributions.Gaussian.IsGaussianProcess.Basic

Gaussian processes #

This file contains basic properties of Gaussian processes. In particular, in IsGaussianProcess.of_isGaussianProcess, we show that if a stochastic process Y : S → Ω → F is such that for each s : S, Y s can be written as a linear map applied to finitely many values of a certain Gaussian process, then Y is itself a Gaussian process.

Main statement #

Tags #

Gaussian process

Basic facts #

theorem ProbabilityTheory.IsGaussianProcess.aemeasurable {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [MeasurableSpace E] [TopologicalSpace E] [AddCommMonoid E] [Module E] (hX : IsGaussianProcess X P) (t : T) :
AEMeasurable (X t) P
theorem ProbabilityTheory.IsGaussianProcess.congr {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : TΩE} [MeasurableSpace E] [TopologicalSpace E] [AddCommMonoid E] [Module E] (hX : IsGaussianProcess X P) (hXY : ∀ (t : T), X t =ᵐ[P] Y t) :

A modification of a Gaussian process is a Gaussian process.

Gaussian Marginals #

theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_eval {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] (hX : IsGaussianProcess X P) (t : T) :
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_prodMk {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {s t : T} :
HasGaussianLaw (fun (ω : Ω) => (X s ω, X t ω)) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_add {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {s t : T} :
HasGaussianLaw (X s + X t) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_fun_add {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {s t : T} :
HasGaussianLaw (fun (ω : Ω) => X s ω + X t ω) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_sub {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {s t : T} :
HasGaussianLaw (X s - X t) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_fun_sub {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {s t : T} :
HasGaussianLaw (fun (ω : Ω) => X s ω - X t ω) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_sum {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {I : Finset T} :
HasGaussianLaw (∑ iI, X i) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_fun_sum {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {I : Finset T} :
HasGaussianLaw (fun (ω : Ω) => iI, X i ω) P
theorem ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_increments {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (hX : IsGaussianProcess X P) {n : } {t : Fin (n + 1)T} :
HasGaussianLaw (fun (ω : Ω) (i : Fin n) => X (t i.succ) ω - X (t i.castSucc) ω) P

The increments of a Gaussian process are Gaussian.

Operations that preserve Gaussianity #

theorem ProbabilityTheory.IsGaussianProcess.of_isGaussianProcess {S : Type u_1} {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopology F] {Y : SΩF} (hX : IsGaussianProcess X P) (h : ∀ (s : S), ∃ (I : Finset T) (L : (IE) →L[] F), ∀ (ω : Ω), Y s ω = L (I.restrict fun (x : T) => X x ω)) :

If a stochastic process Y is such that for each s, Y s can be written as a linear combination of finitely many values of a Gaussian process, then Y is a Gaussian process.

theorem ProbabilityTheory.IsGaussianProcess.comp_right {S : Type u_1} {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (h : IsGaussianProcess X P) (f : ST) :
theorem ProbabilityTheory.IsGaussianProcess.comp_left {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopology F] (L : TE →L[] F) (h : IsGaussianProcess X P) :
IsGaussianProcess (fun (t : T) (ω : Ω) => (L t) (X t ω)) P
theorem ProbabilityTheory.IsGaussianProcess.smul {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (c : T) (hX : IsGaussianProcess X P) :
IsGaussianProcess (fun (t : T) (ω : Ω) => c t X t ω) P
theorem ProbabilityTheory.IsGaussianProcess.shift {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] [Add T] (h : IsGaussianProcess X P) (t₀ : T) :
IsGaussianProcess (fun (t : T) (ω : Ω) => X (t₀ + t) ω - X t₀ ω) P
theorem ProbabilityTheory.IsGaussianProcess.restrict {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [NormedSpace E] [SecondCountableTopology E] (h : IsGaussianProcess X P) (s : Set T) :
IsGaussianProcess (fun (t : s) => X t) P