Documentation

Groebner.Reduced

def MonomialOrder.IsGroebnerBasis.IsMinimal {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} (hG : IsGroebnerBasis G I) :
Equations
Instances For
    def MonomialOrder.IsGroebnerBasis.IsReduced {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} (hG : IsGroebnerBasis G I) :
    Equations
    Instances For
      theorem MonomialOrder.le_degree_of_mem_support {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {p : MvPolynomial σ R} {a : σ →₀ } (ha : a p.support) :
      m.toSyn a m.toSyn (m.degree p)
      theorem MonomialOrder.IsGroebnerBasis.isGroebnerBasis_monomial_minimal {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommSemiring R] (s : Set (σ →₀ )) :
      IsGroebnerBasis ((fun (x : σ →₀ ) => (MvPolynomial.monomial x) 1) '' {x : σ →₀ | Minimal (fun (x : σ →₀ ) => x s) x}) (Ideal.span ((fun (x : σ →₀ ) => (MvPolynomial.monomial x) 1) '' s))
      theorem MonomialOrder.IsGroebnerBasis.smul {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {I : Ideal (MvPolynomial σ R)} {ι : Type u_3} (f : ιR) (f' : ιMvPolynomial σ R) (hf : ∀ (i : ι), IsUnit (f i)) (hG : IsGroebnerBasis (Set.range f') I) :
      IsGroebnerBasis (Set.range fun (i : ι) => f i f' i) I
      theorem MonomialOrder.IsGroebnerBasis.smul_iff {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {I : Ideal (MvPolynomial σ R)} {ι : Type u_3} (f : ιR) (f' : ιMvPolynomial σ R) (hf : ∀ (i : ι), IsUnit (f i)) :
      IsGroebnerBasis (Set.range fun (i : ι) => f i f' i) I IsGroebnerBasis (Set.range f') I
      theorem MonomialOrder.IsGroebnerBasis.inv {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} (hG : IsGroebnerBasis G I) (hG' : gG, IsUnit (m.leadingCoeff g)) :
      IsGroebnerBasis (Set.range fun (g : G) => .unit⁻¹ g) I
      theorem MonomialOrder.IsGroebnerBasis.span_image_leadingTerm {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} (hG : IsGroebnerBasis G I) (hG' : gG, IsUnit (m.leadingCoeff g)) :
      theorem MonomialOrder.IsGroebnerBasis.IsRemainder.self_iff {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} (p : MvPolynomial σ R) (G : Set (MvPolynomial σ R)) :
      m.IsRemainder p G p ap.support, qG, q 0¬m.degree q a
      theorem MonomialOrder.IsGroebnerBasis.IsRemainder.self_tfae {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} (p : MvPolynomial σ R) (G : Set (MvPolynomial σ R)) :
      [m.IsRemainder p G p, B'G, m.IsRemainder p B' p, qG, m.IsRemainder p {q} p, ap.support, qG, q 0¬m.degree q a].TFAE
      theorem MonomialOrder.IsGroebnerBasis.IsRemainder.self {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {G : Set (MvPolynomial σ R)} {p r : MvPolynomial σ R} (h : m.IsRemainder p G r) :
      m.IsRemainder r G r
      theorem MonomialOrder.IsGroebnerBasis.IsReduced.isReduced_def {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} {hG : IsGroebnerBasis G I} :
      hG.IsReduced (∀ pG, m.Monic p) pG, ap.support, qG, q p¬m.degree q a
      theorem MonomialOrder.IsGroebnerBasis.IsReduced.isReduced_monomial {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {s : Set (σ →₀ )} {I : Ideal (MvPolynomial σ R)} (h : IsGroebnerBasis ((fun (x : σ →₀ ) => (MvPolynomial.monomial x) 1) '' {x : σ →₀ | Minimal (fun (x : σ →₀ ) => x s) x}) I) :
      @[simp]
      theorem MonomialOrder.monic_leadingTerm {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} (p : MvPolynomial σ R) :
      theorem MonomialOrder.support_leadingTerm {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} (p : MvPolynomial σ R) [Decidable (p = 0)] :
      theorem MonomialOrder.support_leadingTerm' {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} {p : MvPolynomial σ R} :
      p 0(m.leadingTerm p).support = {m.degree p}
      theorem MonomialOrder.IsGroebnerBasis.IsReduced.unique {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommRing R] [Nontrivial R] {G₁ G₂ : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} {hG₁ : IsGroebnerBasis G₁ I} (hG₁' : hG₁.IsReduced) {hG₂ : IsGroebnerBasis G₂ I} (hG₂' : hG₂.IsReduced) :
      G₁ = G₂
      theorem MonomialOrder.IsGroebnerBasis.IsMinimal.isMinimal_of_isMinimal_leadingTerm {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommRing R] {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} {hG : IsGroebnerBasis (m.leadingTerm '' G) (Ideal.span (m.leadingTerm '' I))} (hG' : hG.IsMinimal) (hGsubset : G I) (hLT : Set.InjOn m.leadingTerm G) :
      theorem MonomialOrder.IsGroebnerBasis.MonomialOrder.degree_le_mul_left {σ : Type u_3} {R : Type u_4} [CommRing R] [IsDomain R] (m : MonomialOrder σ) (p q : MvPolynomial σ R) (hq : q 0) :
      m.degree p m.degree (p * q)
      theorem MonomialOrder.IsGroebnerBasis.IsMinimal.isGroebnerBasis_image_isRemainder {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommRing R] {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} {hG : IsGroebnerBasis G I} (hG' : hG.IsMinimal) (f : GMvPolynomial σ R) (hf : ∀ (g : G), m.IsRemainder (↑g) (G \ {g}) (f g)) :
      theorem MonomialOrder.IsGroebnerBasis.IsReduced.isReduced_image_isRemainder_of_IsMinimal {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommRing R] {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} {hG : IsGroebnerBasis G I} (hG' : hG.IsMinimal) (f : GMvPolynomial σ R) (hf : ∀ (g : G), m.IsRemainder (↑g) (G \ {g}) (f g)) :
      @[simp]
      theorem MonomialOrder.leadingCoeff_mul' {σ : Type u_1} {R : Type u_2} [CommSemiring R] {m : MonomialOrder σ} [NoZeroDivisors R] {f g : MvPolynomial σ R} :
      theorem MonomialOrder.IsGroebnerBasis.IsReduced.exists_of_isGroebnerBasis {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommRing R] {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} (hG : IsGroebnerBasis G I) (hG' : gG, IsUnit (m.leadingCoeff g)) :
      ∃ (B : Set (MvPolynomial σ R)) (h : IsGroebnerBasis B I), h.IsReduced
      theorem MonomialOrder.IsGroebnerBasis.IsReduced.uniqueExists_of_isGroebnerBasis {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [Nontrivial R] [CommRing R] {G : Set (MvPolynomial σ R)} {I : Ideal (MvPolynomial σ R)} (hG : IsGroebnerBasis G I) (hG' : gG, IsUnit (m.leadingCoeff g)) :
      ∃! B : Set (MvPolynomial σ R), ∃ (h : IsGroebnerBasis B I), h.IsReduced