def
MonomialOrder.IsGroebnerBasis.IsMinimal
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis G I)
:
Instances For
def
MonomialOrder.IsGroebnerBasis.IsReduced
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis G I)
:
Instances For
theorem
MonomialOrder.le_degree_of_mem_support
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{p : MvPolynomial σ R}
{a : σ →₀ ℕ}
(ha : a ∈ p.support)
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.singleton_zero_bot
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.empty_bot
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.singleton_zero_iff
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(I : Ideal (MvPolynomial σ R))
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.empty_iff
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(I : Ideal (MvPolynomial σ R))
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.of_subsingleton
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
[Subsingleton (MvPolynomial σ R)]
{s : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
:
IsGroebnerBasis s I
theorem
MonomialOrder.IsGroebnerBasis.isGroebnerBasis_monomial
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommSemiring R]
(s : Set (σ →₀ ℕ))
:
IsGroebnerBasis ((fun (x : σ →₀ ℕ) => (MvPolynomial.monomial x) 1) '' s)
(Ideal.span ((fun (x : σ →₀ ℕ) => (MvPolynomial.monomial x) 1) '' s))
theorem
MonomialOrder.IsGroebnerBasis.isGroebnerBasis_monomial_minimal
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommSemiring R]
(s : Set (σ →₀ ℕ))
:
IsGroebnerBasis
((fun (x : σ →₀ ℕ) => (MvPolynomial.monomial x) 1) '' {x : σ →₀ ℕ | Minimal (fun (x : σ →₀ ℕ) => x ∈ s) x})
(Ideal.span ((fun (x : σ →₀ ℕ) => (MvPolynomial.monomial x) 1) '' s))
theorem
MonomialOrder.IsGroebnerBasis.smul
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{I : Ideal (MvPolynomial σ R)}
{ι : Type u_3}
(f : ι → R)
(f' : ι → MvPolynomial σ R)
(hf : ∀ (i : ι), IsUnit (f i))
(hG : IsGroebnerBasis (Set.range f') I)
:
IsGroebnerBasis (Set.range fun (i : ι) => f i • f' i) I
theorem
MonomialOrder.IsGroebnerBasis.smul_iff
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{I : Ideal (MvPolynomial σ R)}
{ι : Type u_3}
(f : ι → R)
(f' : ι → MvPolynomial σ R)
(hf : ∀ (i : ι), IsUnit (f i))
:
theorem
MonomialOrder.IsGroebnerBasis.inv
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis G I)
(hG' : ∀ g ∈ G, IsUnit (m.leadingCoeff g))
:
IsGroebnerBasis (Set.range fun (g : ↑G) => ⋯.unit⁻¹ • ↑g) I
theorem
MonomialOrder.IsGroebnerBasis.span_image_leadingTerm
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis G I)
(hG' : ∀ g ∈ G, IsUnit (m.leadingCoeff g))
:
IsGroebnerBasis (m.leadingTerm '' G) (Ideal.span (m.leadingTerm '' ↑I))
theorem
MonomialOrder.IsGroebnerBasis.IsRemainder.self_iff
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(p : MvPolynomial σ R)
(G : Set (MvPolynomial σ R))
:
theorem
MonomialOrder.IsGroebnerBasis.IsRemainder.self_tfae
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(p : MvPolynomial σ R)
(G : Set (MvPolynomial σ R))
:
theorem
MonomialOrder.IsGroebnerBasis.IsRemainder.self
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{p r : MvPolynomial σ R}
(h : m.IsRemainder p G r)
:
m.IsRemainder r G r
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.isReduced_def
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis G I}
:
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.isMinimal
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis G I}
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.of_subsingleton
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
[Subsingleton (MvPolynomial σ R)]
{s : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
:
@[simp]
theorem
MonomialOrder.IsGroebnerBasis.IsMinimal.of_subsingleton
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
[Subsingleton (MvPolynomial σ R)]
{s : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
:
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.isReduced_monomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{s : Set (σ →₀ ℕ)}
{I : Ideal (MvPolynomial σ R)}
(h :
IsGroebnerBasis
((fun (x : σ →₀ ℕ) => (MvPolynomial.monomial x) 1) '' {x : σ →₀ ℕ | Minimal (fun (x : σ →₀ ℕ) => x ∈ s) x}) I)
:
@[simp]
theorem
MonomialOrder.monic_leadingTerm
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(p : MvPolynomial σ R)
:
theorem
MonomialOrder.support_leadingTerm
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(p : MvPolynomial σ R)
[Decidable (p = 0)]
:
theorem
MonomialOrder.support_leadingTerm'
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{p : MvPolynomial σ R}
:
theorem
MonomialOrder.IsGroebnerBasis.IsMinimal.image_leadingTerm_eq_image_monomial_one
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis G I}
(hG' : hG.IsMinimal)
:
theorem
MonomialOrder.IsGroebnerBasis.IsMinimal.isReduced_leadingTerm
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis G I}
(hG' : hG.IsMinimal)
:
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.unique
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommRing R]
[Nontrivial R]
{G₁ G₂ : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG₁ : IsGroebnerBasis G₁ I}
(hG₁' : hG₁.IsReduced)
{hG₂ : IsGroebnerBasis G₂ I}
(hG₂' : hG₂.IsReduced)
:
theorem
MonomialOrder.IsGroebnerBasis.IsMinimal.isGroebnerBasis_of_isMinimal_leadingTerm
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommRing R]
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis (m.leadingTerm '' G) (Ideal.span (m.leadingTerm '' ↑I)))
(hG' : hG.IsMinimal)
(hGsubset : G ⊆ ↑I)
:
IsGroebnerBasis G I
theorem
MonomialOrder.IsGroebnerBasis.IsMinimal.isMinimal_of_isMinimal_leadingTerm
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommRing R]
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis (m.leadingTerm '' G) (Ideal.span (m.leadingTerm '' ↑I))}
(hG' : hG.IsMinimal)
(hGsubset : G ⊆ ↑I)
(hLT : Set.InjOn m.leadingTerm G)
:
theorem
MonomialOrder.IsGroebnerBasis.leadingCoeff_add_of_lt_right
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
(f g : MvPolynomial σ R)
(h : m.toSyn (m.degree f) < m.toSyn (m.degree g))
:
theorem
MonomialOrder.IsGroebnerBasis.MonomialOrder.degree_le_mul_left
{σ : Type u_3}
{R : Type u_4}
[CommRing R]
[IsDomain R]
(m : MonomialOrder σ)
(p q : MvPolynomial σ R)
(hq : q ≠ 0)
:
theorem
MonomialOrder.IsGroebnerBasis.IsMinimal.isGroebnerBasis_image_isRemainder
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommRing R]
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis G I}
(hG' : hG.IsMinimal)
(f : ↑G → MvPolynomial σ R)
(hf : ∀ (g : ↑G), m.IsRemainder (↑g) (G \ {↑g}) (f g))
:
IsGroebnerBasis (Set.range f) I
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.isReduced_image_isRemainder_of_IsMinimal
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommRing R]
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
{hG : IsGroebnerBasis G I}
(hG' : hG.IsMinimal)
(f : ↑G → MvPolynomial σ R)
(hf : ∀ (g : ↑G), m.IsRemainder (↑g) (G \ {↑g}) (f g))
:
@[simp]
theorem
MonomialOrder.leadingCoeff_mul'
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder σ}
[NoZeroDivisors R]
{f g : MvPolynomial σ R}
:
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.exists_of_isGroebnerBasis
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[CommRing R]
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis G I)
(hG' : ∀ g ∈ G, IsUnit (m.leadingCoeff g))
:
∃ (B : Set (MvPolynomial σ R)) (h : IsGroebnerBasis B I), h.IsReduced
theorem
MonomialOrder.IsGroebnerBasis.IsReduced.uniqueExists_of_isGroebnerBasis
{σ : Type u_1}
{m : MonomialOrder σ}
{R : Type u_3}
[Nontrivial R]
[CommRing R]
{G : Set (MvPolynomial σ R)}
{I : Ideal (MvPolynomial σ R)}
(hG : IsGroebnerBasis G I)
(hG' : ∀ g ∈ G, IsUnit (m.leadingCoeff g))
: